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The ability of a large-eddy simulation to  represent the large-scale motions in the 
interior of a turbulent flow is well established. However, concerns remain for the 
behaviour close to rigid surfaces where, with the exception of low-Reynolds-number 
flows, the large-eddy description must be matched to some description of the flow in 
which all except the larger-scale ‘inactive ’ motions are averaged. The performance 
of large-eddy simulations in this near-surface region is investigated and it is pointed 
out that in previous simulations the mean velocity profile in the matching region has 
not had a logarithmic form. A number of new simulations are conducted with the 
Smagorinsky (1963) subgrid model. These also show departures from the logarithmic 
profile and suggest that it may not be possible to eliminate the error by adjustments 
of the subgrid lengthscale. An obvious defect of the Smagorinsky model is its failure 
to represent stochastic subgrid stress variations. It is shown that inclusion of these 
variations leads to a marked improvement in the near-wall flow simulation. The 
constant of proportionality between the magnitude of the fluctuations in stress and 
the Smagorinsky stresses has been empirically determined to give an accurate 
logarithmic flow profile. This value provides an energy backscatter rate slightly 
larger than the dissipation rate and equal to idealized theoretical predictions 
(Chasnov 1991). 

1. Introduction 
In  most turbulent flows the transports of heat and momentum are dominated by 

large-scale motions whose properties depend on some integral characteristics of the 
flow. As a result time-average closure techniques which depend on local mean 
gradients are often inadequate, whilst large-eddy simulations offer the potential for 
accurate predictions. A large-eddy simulation involves calculating the large-scale 
turbulent motions explicitly with a three-dimensional numerical model whilst the 
smaller-scale motions are parametrized. In the flow interior, away from boundaries 
and significant statically stable stratification, this approach seems both rational and 
is in practice insensitive to the details of the parametrization of small-scale motions. 
The rationality arises when the distinction between the large-scale (resolved-scale) 
and parametrized motions (subgrid-scale) falls within an inertial subrange. In  such 
cases theory (e.g. Lesieur 1987) and results from applications (Bardina, Ferziger & 
Reynolds 1983) suggest that a simple eddy viscosity may provide an adequate 
parametrization (subgrid-scale model). Bardina et aZ.’s work shows that in these cases 
it makes little difference whether the eddy viscosity varies in proportion to the local 
deformation (the Smagorinsky 1963 model), or takes a constant value corresponding 
to an ensemble mean of the local Smagorinsky model values. The mean viscosities 
from the Smagorinsky model vary slowly in flow interiors and in these regions the 
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large-eddy simulation of a high-Reynolds-number flow will have the character of a 
moderate-Reynolds-number flow with the eddy viscosity giving the moderate 
‘ Reynolds ’ number. A so-called direct simulation considers a numerical repre- 
sentation of a true moderate-Reynolds-number flow with a constant molecular 
viscosity. The critical differences between a large-eddy simulation of a high- 
Reynolds-number flow and a moderate-Reynolds-number direct simulation thus 
arise near the boundary and in regions of strong static stability. In  these regions the 
characteristic scale of the turbulence reduces to values less than the size of the mesh 
spacing and the magnitude of the implied eddy viscosity will reduce. In the present 
study attention will be confined to the near-surface region and the problem of 
statically stable flow will not be dealt with. Since the behaviour in the region near 
a surface determines the main difference between a high-Reynolds-number 
simulation and one of only moderate Reynolds number, it is crucial that this 
behaviour is correct. Existing boundary conditions and near-wall subgrid models are 
based on results from time-averaged flows and their application to large-eddy 
simulations is uncertain. 

Previous studies have used high-resolution large-eddy simulations to examine 
whether subgrid models are adequate in the flow interior (Bardina et al. 1983). A 
comparison was made between stress values averaged over a number of mesh points 
and stress values obtained by applying the subgrid model to fields averaged over 
these points. It was found that the instantaneous stresses were much larger than 
those implied by the Smagorinsky model. Since the subgrid motions are only 
considered to be averaged over a scale comparable to the largest subgrid scale, such 
large instantaneous stresses are expected just from the point of view of statistical 
stability. However, in the flow interior of a typical large-eddy simulation the amount 
of energy occurring on the subgrid scale is usually only about 15% of the total 
energy. The interior subgrid fluxes (of scalars and momentum) are only about 3 % of 
the total fluxes. Such values confirm that the typical flow interior mesh sizes are 
smaller than the scales involved in turbulence energy production and lie within a t  
least the start of the inertial subrange. This and the insensitivity of results to the 
subgrid-scale model give confidence that, in spite of the lack of statistical fluctuations 
in the modelled subgrid stress, the simulation is reliable in the flow interior. 

The modelling of the near-surface region differs considerably from the modelling 
of flow interior. In most large-eddy simulations the mesh spacing parallel to the 
surface is constant with distance from the boundary whilst the mesh is usually 
refined in the vertical close to the surface. This refinement does not allow the 
resolution of the truly three-dimensional motions which occur on a decreasing scale 
as the surface is approached, but is essential to allow a proper resolution of quasi- 
two-dimensional motions which occur near the surface and which derive from the 
‘interior ’ eddies. The limit to model representation of three-dimensional motions is 
set by the resolution parallel to the boundary. The subgrid model and/or boundary 
conditions near the surface thus need to represent the near-surface eddies whose scale 
varies in proportion to distance from the surface. On the one hand this can be 
anticipated to be difficult as, in contrast to the flow interior, it  involves the main 
production scale. On the other hand there are some encouraging factors. At these 
heights there is a local balance between the ensemble-average turbulence energy 
production and dissipation. Near the surface, the characteristic scale of the turbulent 
motions becomes smaller than the scale of numerical mesh parallel to the surface, and 
with this implied volume averaging there is some hope of the subgrid stresses 
becoming deterministic functions of the resolved velocity as the surface is 
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approached. The gravest difficulties can be anticipated to be a t  the 'matching' 
height at  which the magnitudes of the resolved and subgrid stresses are comparable. 
At  this height the worst of everything prevails. The subgrid stresses are large and 
would be expected to have statistical fluctuations. 

In this paper we confine attention to the simulation of equilibrium boundary 
layers in flows with arbitrarily high Reynolds number. The specific boundary 
conditions chosen concern infinite-Reynolds-number flow over a rough surface, but 
an analogous model would apply to high-Reynolds-number flow over a smooth 
surface. We begin by examining a typical simulation with a Smagorinsky subgrid 
model. The simulation fails to maintain the correct logarithmic flow profile in the 
matching region, the velocity gradient in this region being too great. A series of 
simulations with varying resolution and a different near-surface mixing-length 
descriptions were conducted to try to improve the flow profile in the matching region. 
Section 2 presents the large-eddy model used for these studies and 9 3 the results. No 
adequate solution to the difficulties was found. In $ 4  a stochastic subgrid model is 
proposed and the results obtained with this are presented in $5.  These results show 
a marked improvement in the near-wall mean velocity and temperature profiles. 
Finally in 56 conclusions are given. 

2. Model description 
The large-eddy simulation technique used in the present study is, apart perhaps 

from the boundary conditions, fairly standard and is based on the Smagorinsky 
(1963) subgrid model. Conceptually we consider spatially filtered velocity and scalar 
fields and seek to solve the set of continuous equations obtained by applying this 
filter operation to the Navier-Stokes equations, i.e. 

where (ul, u2, us) = (u, w, w) are the components of the (filtered) velocity u and 8 is a 
passive scalar that will be included in some of the simulations ; u is the component 
in the streamwise or x-direction, v is the component in the spanwise or y-direction, 
and w is the component in the vertical or z-direction, i.e. the direction normal to the 
non-slip boundary ; p is the pressure or, more correctly, pressure divided by density 
- however, to simplify the language we will suppress mention of the density both here 
and below (or, equivalently, choose units of mass so that the density is unity). A fixed 
mean pressure gradient aP/ax is included, Ti, is the subgrid stress tensor and Hi the 
subgrid scalar flux vector. Some of the simulations described below are intended to 
represent a planetary boundary layer; for these simulations a term u A kf, where k 
is a vertical unit vector andfis the Coriolis parameter s-l), is added to the right- 
hand side of (1) to represent the Coriolis force, and the mean pressure gradient is 
applied in the y-direction instead of the x-direction (so that the geostrophic wind is 
aligned with the x-axis). 

In  order to close equations (1)-(3) we need a model for z and H. The more usual 
deterministic models employ either a high-order closure or a local equilibrium limit 



54 P. J .  Mason and D .  J .  Thomson 

of such a closure, essentially the Smagorinsky model. From past studies it is clear 
that the Smagorinsky model is usually adequate and certainly the best understood 
model. It will be adopted in the present study, i.e. 

ae H .  = --- 
a Pr axil 

where the eddy viscosity v is given by 

v = 12s (6) 

and (7) 

Here Pr is a Prandtl number, taken to be 0.7, and I is a lengthscale. Note that the 
modelled subgrid stress tensor is traceless -the isotropic part can be regarded as 
being absorbed in a redefinition of the pressure. In the interior of the flow (the near- 
surface behaviour will be considered below) I is set equal to a constant lengthscale I ,  
which according to the theoretical arguments of Lilly (1967), we may relate to a filter 
scale 1, by I ,  = Zo/Cf, where C, is about 0.2 and depends upon the exact form assumed 
for the filter operation. However, it is important to note that the form of the filter 
seen by the resolved motions is determined by the subgrid model and not by any 
particular assumed form for the filter. The Smagorinsky model only involves a single 
scalar parameter I ,  which describes the scale of the as yet unknown filter which the 
Smagorinsky model gives. 

At this stage we are not concerned with finite-difference implementation but 
merely with the continuous equations. A characteristic of the near-wall region is that 
the lengthscale of the subgrid-scale motions will not be given by a constant value of 
I ,  but will decrease as the wall is approached. Specifically, with a no-slip condition 
of u = 0 at z = 0 and a roughness length z,, we have 

v = K2(Z+Z0)2S  (8) 
for ( x - k z , )  < I , ,  where K is the von KArmAn constant. This provides a rational 
boundary behaviour which is both consistent with the Smagorinsky model in form 
and which, in the limit ( z + z o )  -g Z,, is correctly deterministic in character. In this 
limit we are dealing with the average of three-dimensional eddies of scale - ( z  + 2,) 

in a volume - 1: and the resulting stress should be a deterministic function of the 
filtered velocity field. The remaining problem concerns the match between the near- 
surface region and the interior. Here we shall consider simple but arbitrary matches 
such as 

where n is a constant. 
Equations (1)-(7) and (9) together with (i) a choice for I,, (ii) the boundary 

condition u = 0 a t  z = 0, and (iii) the boundary conditions at the top of the domain, 
provide a complete definition of the model problem. Since it will be advantageous in 
a practical simulation, it is useful to ask whether the logarithmic boundary condition 
could be explicitly implemented at  some height, i.e. 

1/Z" = 1/10" + l / ( K ( Z + Z O ) ) n ,  (9) 
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(11)  
1 

where M = -In (1 + z / z o ) ,  
K 

u ( z )  is the horizontal velocity a t  a height z and 7 is the surface stress vector. Similar 
equations apply to 8. Clearly this will be valid as z approaches zo and will be invalid 
far above the boundary (owing to fluctuations in v which are imperfectly correlated 
with fluctuations in the surface stress), but the maximum height at  which it can be 
correctly applied needs to be determined. 

For (10) to be equivalent to the application of the mixing-length relation (9) on a 
refined mesh, the difference in stress between the surface and height z must be much 
less than the variations in surface stress. From the (resolved) momentum equation 
we note this stress difference is related to the (resolved) time change, advection and 
pressure gradient terms. In the flow interior such terms are in rough balance and 
have similar values, but as the non-slip surface is approached the pressure gradient 
persists whilst the other terms fall to zero. At  the surface the vertical gradient of the 
shear stress must equal the local resolved horizontal pressure gradient and the 
departure of the stress between its surface value and the value a small height z above 
the surface will be - zaplax, where ap/ax is the typical magnitude of the horizontal 
pressure gradient. In  most problems the fluctuating pressure gradient is greater than 
the mean pressure gradient and, as noted, the surface values will be typical of those 
in the flow interior, i.e. - u;/L where u* is the square root of the surface stress (a 
scale for the velocity fluctuation) and L is the lengthscale for differentiating the 
pressure fluctuations and is expected to be of order 1,. As noted above, for accurate 
application of (10) we require the stress change - zu2,/L to be less than the variations 
in surface stress. If we assume resolved velocity fluctuations of size - u’(z) a t  
the height z we can use (10) to estimate the magnitude of the stress fluctua- 
tions as - u;u’(z)/U,(z), where Uo(z) is the mean flow profile. The requirement for 
using (10) then becomes zu:/L 4 u2,u’(z)/Uo(z), i.e. z 4 a,, where 6, is defined by 
6, - Lu’(6,)/Uo(6,). Now we expect u’(z) to vary logarithmically below 13, and to be 
of order u* at  a height - L. This leads to u’ - u* log (z/z,)/log (L/zo)  and 

The scale, S,, can be physically identified with the characteristic diffusion height 
scale of variations on a scale L and it is also relevant in boundary-layer problems 
involving flow over undulations or roughness changes (see e.g. Wood & Mason 1991). 
However it is difficult in practice to make this estimate quantitative. The 
recommended procedure is to check that the height of application of (lo), the surface 
value of ap/ax and the standard deviation of the surface stress cr7 satisfy 

zaplax C7. (13) 

To obtain the variance of the velocity components and of 8, diagnostic estimates 
of the subgrid contributions are required. These are obtained by assuming that the 
subgrid energy E is isotropically distributed among the three velocity components 
and by adopting the following estimates of E and the scalar variance Ee: 

Here B and ee are the rates of dissipation of energy and half the scalar variance by 
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viscosity and molecular diffusivity. If, consistent with the Smagorinsky model, we 
assume a local balance between production and dissipation of subgrid energy, E and 
e0 are given by vS2 and vD2/Pr respectively, where D2 is the square of the local 
temperature gradient. Also C, = a3 and D, = Pra:/a, where a2 is the stress-energy 
ratio and a; is the correlation coefficient for the heat flux vector, defined by 
a: = lH12/(E0E) (values of a2 = 0.3 and a: = 0.45 are taken from inertial sub-range 
arguments, Mason 1989). We note that there is some uncertainty over the validity 
of these values. The inertial subrange arguments (based on the approach of Lilly 
1967) contain many assumptions and, in any case, we have not adopted the value of 
Pr (and hence of D l )  implied by these arguments. Also, the arguments break down 
in the near-surface region where the subgrid scales are no longer isotropic and C ,  and 
D, may not be constant. 

Having presented the problem in continuous equations the problem of imple- 
menting a finite-difference solution remains. The representation in finite-difference 
form introduces the parameter C,  = &,/A,  where A is a typical mesh spacing 
(wherever a quantitatively precise value of A is needed, it will be defined to be 
( A z A Y A z ) $ .  Although, on the assumption that A = I , ,  C ,  has been regarded as a 
fundamental constant, here we follow Mason & Callen (1986) and recognize that, with 
1, selected, C, is only a measure of numerical resolution. Large values of C, (greater 
than about 0.2) provide smooth well-resolved solutions with little finite-difference 
error (If 2 A ) ,  whilst smaller values give rough solutions with finite-difference errors 
(Z, < A ) .  In  practice a fixed number of mesh points are available to most studies and 
unduly large values of C, will restrict the range of scales simulated to the detriment 
of the results. Optimum results are likely to be obtained with C, small enough to give 
finite-difference errors no greater than the errors implicit in the formulation of the 
subgrid model. This value is a matter of judgement and may vary from problem to 
problem if the scale of the subgrid motions extends close to the energy-producing 
scales. In  the present study a range of values close to 0.2 will be considered. A 
Galilean transformation is used to reduce the Courant-number limitations on the 
timestep, with the equations being solved in a frame moving a t  the average of the 
maximum and minimum horizontally averaged velocities (excluding the surface level 
where u = 0). 

In principle the implementation of boundary conditions presents no finite- 
difference problems, but using fine vertical resolution close to boundaries has direct 
penalties in its use of mesh points. In  the present study the computational boundary 
condition which is applied is thus equation (10) above. The height at  which it is 
applied is such that (13) is satisfied and the effective near-wall behaviour does not 
differ significantly from that obtained with good resolution down to the surface and 
direct application of the no-slip condition. Other aspects of this boundary condition 
and differences between the von KBrmBn constant implied by the instantaneous and 
the time-averaged velocity profiles are discussed by Mason & Callen (1986). 

The numerical methods used are also discussed by Mason & Callen (1986) but the 
details of the results depend on the methods adopted and the essential features will 
be noted again. The numerical procedure, which uses a staggered mesh, is second- 
order accurate in space on grids with slowly varying vertical mesh spacings and uses 
a form of the nonlinear terms (Piacsek & Williams 1970) which, with the leapfrog 
time-marching scheme, ensures energy and scalar variance conservation properties. 
The values of the deformation S and the eddy viscosity v are evaluated and stored 
on w-points so as to avoid averaging of important z-derivatives in the z-direction. 
Although not useful in all flows, this choice provides an improved accuracy in 



Stochastic backscatter in large-eddy simulations 57 

boundary-layer flows of the type considered here. For numerical stability the viscous 
terms are advanced in time with a simple forward timestep. 

Noting that the aim of the present study is to consider, in particular, the match 
between the interior flow and the near-surface boundary conditions, attention is 
confined to flows in which a boundary layer with logarithmic flow profile is expected. 
These simulations have been conducted with compromises that should not affect the 
present study but that are not ideal for study of the whole boundary layer. 

The first flow considered is a neutral static stability planetary boundary layer. 
These simulations involve a Coriolis term and a consequent long timescale for 
geostrophic adjustment. They also have a tendency to show deep large-scale 
motions. In  the present simulations these effects have been reduced by applying the 
boundary conditions u = U,, v = 0, w = 0 (and 9 = 0 for the passive scalar) at the 
top of the domain. Here U, is the geostrophically balanced velocity expected well 
above the boundary layer. The lateral boundaries are considered periodic. The height 
of the top of the domain has been chosen so as to correspond roughly to the expected 
height scale of the stress variation. The specific parameters selected are a surface 
roughness length z, of 0.1 m and U, = 10 m s-l with a domain depth of 1200 m, a 
domain length in the z-direction of 3200 m and a lateral domain width of 1600 m. In 
this restricted size of domain the direct influence of the Coriolis term is limited to the 
mean flow. The number of grid points is modest i.e. 40 x 40 x 24 in the z-, y- and x- 
directions but allows a reasonable simulation that is broadly comparable with the 
more detailed simulations of Mason & Thomson (1987). The z-direction mesh has a 
variable spacing with smaller grid intervals close to the surface. The passive scalar 
is introduced into these simulations by imposing a constant surface flux H,. With an 
imposed flux the logarithmic surface boundary condition for the scalar is only 
required for diagnostic estimates of the surface value of the scalar field. The value of 
I ,  used is 10 m and C, has a value of about 0.2 in the lower third of the domain but 
decreases to about 0.15 close to the upper boundary. The height of the lowest grid 
point above the surface is about 5 m. 

The second flow considered is very similar but lacks the small complicating 
influence of the Coriolis term. The flow considered is turbulent flow in a horizontally 
infinite channel with a stress-free (but rigid) upper surface and constant imposed 
pressure gradient. The lower rigid non-slip surface is taken as rough with the same 
value of z,, i.e. 0.1 m, as used in the planetary-boundary-layer case. The channel 
depth up to the free-surface boundary conditions (aulaz = av/& = 0, w = 0) has been 
taken as 1000 m. In order to provide high spatial resolution of the eddies, critical in 
determining the lower part of the boundary layer, the length of the domain has been 
limited to 1000m and the width to 600m. This will clearly cause the loss of 
significant larger-scale eddies and this must be noted in considering the results. The 
number of mesh points used is 5 4 x 5 4 ~ 6 4  so that relative to the planetary- 
boundary-layer simulation the resolution has been increased by a factor of about 4 
in all three directions. In  the interior of the flow Az is 19 m, with most of the mesh 
refinement occurring below 200 m. The height of the lowest grid point above the 
surface is about 0.6 m. The various simulations used values of 1, varying from 2 m to 
5 m, corresponding to values of C, (based on the grid spacing in the interior) between 
about 0.13 and 0.32. 

The initial conditions for the simulations were given by the solution of a one- 
dimensional mixing-length model with random perturbations added. The model 
running procedures including timestep determination were as used by Mason & 
Callen (1986). The results shown here were all obtained after periods of a t  least 5S/u, 
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from the initial conditions, where S is the boundary-layer depth and u, is the square 
root of the mean surface stress. The results shown are subsequent averages over 
periods of approximately 2S/u,. 

3. Smagorinsky model results 
We first consider the neutral static stability planetary-boundary-layer simulation 

with the standard Smagorinsky subgrid model and a mixing-length profile given by 
(9) with n = 2. For the purpose of checking on the match between the flow interior 
and the wall region, this simulation can be considered similar to past high-Reynolds- 
number simulations of boundary layers in which a logarithmic velocity profile is 
expected. The shear stress profiles (figure 1) show a steady decrease of rn with 
height; this is of course an inevitable consequence of momentum budget 
considerations. The values of ztul are somewhat smaller and are caused by the 
influence of the Coriolis term. These flow statistics were obtained after a simulation 
time of about 6 h and the mean flow is still evolving slowly on the Coriolis timescale. 
The adjustment timescale for the turbulence is much more rapid than the Coriolis 
timescale and the turbulence approximates to a steady state. 

Figure 2 shows the variances ut, ui and gk of the velocity components in this flow. 
A diagnostic estimate of the subgrid-scale variances has been obtained using (14) and 
the assumption of equal energy in each component. This is not an adequate 
diagnostic estimate close to the surface but it is reasonable in the flow interior. The 
rk profile in particular shows an unrealistic local minimum close to the surface. With 
allowance for this deficiency, the values of u: and u: are in rough agreement with 
observations but the CT: profile close to the surface shows an unrealistic elevated 
maximum. There are two factors which seem likely to contribute to this error. Close 
to the surface the eddy structure in this simulation (see e.g. Mason & Thomson 1987) 
shows distinct elongated structures which are similar in character to the near-surface 
streak structure correctly seen in low-Reynolds-number simulations (Moin & Kim 
1982). However, in reality the expected flow structure in the logarithmic region is of 
eddies which have a self-similar structure with height. Hence, as a result of the self- 
similar smaller-scale eddies which are unresolved in the model, there may be a 
further tendency to transfer energy from u into the other flow components which is 
not present in the model. With the application of a filter to this self-similar structure, 
the occurrence near the surface of streak structures of fixed scale is not surprising, 
but perhaps resembles a low-Reynolds-number simulation with a viscosity 
numerically equal to the subgrid-scale turbulent diffusivity of the large-eddy 
simulation. This is a rather loose argument but it seems wise to express concern that 
the character of the near-surface flow seems to match observations of low-Reynolds- 
number flows. The other factor is more definite in its diagnosis. Figure 3 shows the 
vertical profiles of non-dimensional velocity shear S, and passive scalar gradient So 
in the lowest third of the boundary layer, where S, and S, are defined by 

a a K ( X + X o )  U,8,(uw2 +m2): s - 
az 8,Pr weu; I 

with 0, = -Ho/u,. These quantities should take a value of unity within the strict 
near-surface logarithmic layer. Over the depth of the boundary layer the shear stress 
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I 
- 2u: 0 2u: 

FIGURE 1 .  Shear stress profiles, and TBB, from the planetary-boundary-layer simulation 
without backscatter. Solid lines : total stress; dashed lines : resolved part. 

I 

FIGURE 2.  Profiles of the velocity variances CT;. cr: and uT, from the planetary-boundary-layer 
simulatjion without backscatter. Solid lines : total variance ; dashed line : suhgrid part. The suhgrid 
contributions to each variance are assumed equal and calculated from (14). 

0 8U: 

decreases to  zero whilst, in consequence of the constant scalar upper boundary 
condition, the scalar flux does not vary. To make the values of S, and S, comparable 
S, has been defined with the factor u , B , ( ~ 2 + ~ 2 ) ~ / u ~ ~ ,  where UW, ZIW and are 
the horizontally averaged values of the (subgrid plus resolved) shear stress and scalar 
flux. If the flux-gradient relation between the horizontally averaged gradients and 
fluxes of the scalar is the same (apart from a Prandtl-number correction) as that  for 
velocity, this factor will make S,  = 8,. Pr here refers to the Prandtl number for all 
the turbulence ; however, we adopt the same value as used in the subgrid model (0.7) 
in calculating 5,. For further reference the non-dimensional shear obtained from a 

I F I, .\I 212 
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FIGURE 3. Profiles of the non-dimensional shear and passive scalar gradient from the planetary- 
boundary-layer simulation without backscatt,er. Also shown is the non-dimensional shear obtained 
from a mixing-length solution with the mixing length given by (15). 

mixing-length solution of the channel flow problem described in 92 is also shown (the 
channel and planetary-boundary-layer flows are of course expected to be very similar 
near the surface). The mixing length 1 has been given by 

1 1 +- - -- 1 - 
1 K ( Z + Z O )  I, 

with I, = 80 m. This mixing-length solution is shown to illustrate what might be 
considered an acceptable variation of non-dimensional shear within the nominally 
logarithmic region. The simulation results show, for both the velocity and scalar 
profiles, a severe error. The non-dimensional shear shows a maximum value of about 
2 at  a height of order the characteristic height of the matching region. This excessive 
value of a t i / az  is certain to have contributed to the excessive values of CT; which are 
also dominant a t  this height. It is also certain to have contributed to errors in global 
quantities such as the drag coefficient. 

Noting that the shear stress profile is forced by momentum budget considerations 
to be realistic we can comment on what features of the simulation may have caused 
the problem. The most trivial cause would be too small a value of subgrid-scale 
mixing length in the matching region. If the resolved motions remain unchanged 
then a correct velocity profile must be obtainable by use of a suitable value of mixing 
length. The other cause might be the resolved motions. Two not entirely separate 
changes to the resolved motions might resolve the problem. First, an increase in the 
resolved uw would cause the subgrid part of uw to reduce and hence would reduce 
the mean velocity gradient. Alternatively an increase in the size of the resolved 
motion deformation would, for fixed subgrid mixing length and mean velocity 
gradient, lead to an increased subgrid shear stress. However, because the shear stress 
profile is forced to be realistic, the subgrid stress cannot increase and so the mean 
velocity gradient would decrease. Similar considerations apply to the passive scalar 
gradients. 

The errors discussed here, are, we believe, detectable in all past high-Reynolds- 
number simulations of comparable boundary layers. Such simulations start with the 



Stochastic buckscatter in large-eddy simulations 61 

300 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 2  

8. 
FIGURE 4. Profiles of the non-dimensional shear from simulations of flow in a free-surface channel 
(without backscatter). Profile B is from a simulation with 1, = 2 m and n = 1 ; C is with 1, = 3 m 
and n = 1 ;  D is with E ,  = 3 m and n = 2 ;  E is with 1, = 3 m and with 1 = K ( z + z , ) / [ ~  + h S / ( 6 + h ) ] i ,  
where h = K ( z + z , ) E , ,  replacing equation (9); F is with 1, = 5 rn and n = 2;  G is with I ,  = 5 m and 
n = ; A is the non-dimensional shear obtained from a mixing-length solution with the mixing- 
length given by (15).  

results of Deardorff (1970) and include the coarse-resolution solutions in the work of 
Piomelli, Moin & Ferziger (1988). Previous results with a refinement of the near-wall 
resolution show similar excessive gradients in the matching region to those shown 
here. Past results from simulations with no mesh refinement a t  the wall simply show 
an excessive gradient between the two grid points nearest the wall. Low-Reynolds- 
number large-eddy simulations such as those considered by Piomelli et al. (1988) do 
not suffer from this problem. This is most probably just a consequence of the full 
resolution of the near-wall turbulence which occurs in these cases; close to the wall 
the subgrid viscosity becomes less than the molecular viscosity and so the simulation 
is essentially a direct simulation. Such high resolution of wall regions is not possible 
in high-Reynolds-number flows such as the atmospheric boundary layer and it is 
clear that  the problem must be solved to allow satisfactory application of large-eddy 
simulations to high-Reynolds-number flows. 

In order to investigate this problem a series of simulations of infinite-Reynolds- 
number turbulent flow in a free-surface channel flow were conducted as described 
above in $2. From these simulations we will only present the profiles of non- 
dimensional velocity gradient in the lowest third of the channel depth. The first 
question to  address is whether the error will vanish as the resolution increases. Profile 
D in figure 4 is from a simulation with the same form for the profile of 1 as used with 
the planetary- boundary-layer simulation but the filter scale and mesh spacings are 
a factor of about 3 4  smaller. The velocity profile shows a qualitatively similar error 
but the height scale over which i t  occurs is reduced and the size of error is also 
slightly reduced. I n  consequence of these quantitative changes the solution is more 
satisfactory but the error remains substantial and still distorts the r; profile to  give 
an unrealistic maximum close to the surface. 

Velocity profiles B, C, D, F and G show the consequence of varying the power n 
in (9) and of varying the filter scale with fixed mesh spacing. These changes alter the 

:I-? 
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height scale ofthe error but none produce a marked improvement. Profilc E has been 
obtained in a simulation using a mixing-length function derived cmpirically from the 
simulation giving profile C. Given the resolved motion characteristics of that 
simulation, thc mixing-length profile required to give the expected velocity profile 
has been estimated and approximatcd with a fit to a simple function. The resulting 
Z-profile actually exceeds I, in thc matching region. If the resolved motion did not 
change, this new Z-profile would give the desircd velocity profile. In fact the large 
values of &/8z occur a t  a highcr height as the incrcascd lengthscalcs damp the 
turbulence and increase the height of the matcahing rcgion. The error has not been 
significantly reduced. 

From these tests we arc' forced to the vicw that perhaps no mixing-length variation 
with height would be satisfactory. Xo proof of this can bc given but the tcsts point 
strongly to this conclusion. In the matching region the simulation seems to lack 
resolved stress. A possible physical process whosr omission may have caused this 
problem is the expected statistical fluctuations in subgrid stress. Fluctuations in 
subgrid stress will scatter energy from the subgrid scales to the resolved scales. This 
process is further likely to be of maximum importance precisely in the matching 
region where thc subgrid stresses arc large but the subgrid lengthscale is still 
comparable with the scale of the filter operation. u'cl will now present a proposal for 
adding these stress fluctuations to our subgrid model and then present results 
obtained with this 'stochastic hackscatter '. 

4. Backscatter model 
It has long been recognized that subgrid-scale stresses should have stochastic 

fluctuations and that these fluctuations lead to a backscatter of energy from the 
subgrid scales (e.g. Leslie & Quarini 1979: Kraicahnan 1976). In a spectral 
representation this arises through the interartion between the sub-filter-scale 
wavenumbers which transfers energy to resolved-scale wavenumbers. In physical 
space the process is simply seen as fluctuations in the subgrid stresses. Recent work 
(Chasnov 1991) has sought to calculate this backscatter in an inertial subrange using 
EDQNM theory. Such theory is important in confirming that the approach adopted 
here is reasonable, but it could not easily, in itself, be applied to the present problem. 
Other recent work (Leith 1990) parallels the present work more closely in providing 
an implementation in a large-eddy simulation of an anisotropic flow but does not 
engage the issue of dealing with the ncar-surface region of a boundary layer. In the 
flow interior the model detailed here is essentially the same as that proposed by 
Leith. Given the common desire to link with the Smagorinsky model and the 
expected spectral form of the backscatter. this similarity is inevitable. In the present 
study the intention is to incorporate backscatter in the wall region of the flow. In this 
region the subgrid scales no longer correspond to an inertial subrange and the 
theoretical basis is consequently weaker. The model proposed is in essence based on 
physical and dimensional reasoning. 

In physical space we can consider a filter and regard the velocity field as divided 
into a filtered part ( u )  and a fluctuation or subgrid part u - ( u ) .  These fluctuating 
parts give rise to the subgrid stresses. A deterministic subgrid model relates such 
subgrid stresses to the gradients of the resolved (u) ,  (v) and (w) fields. The 
Smagorinsky model is a mixing-length implementation of this determination and, in 
the absence of subgrid-scale transport processes, provides a drain of energy whose 
magnitude seems reasonable in the mean. If we consider that the subgrid-scale eddies 
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have a characteristic lengthscalc 1, and characteristic timescale T, then, from 
consideration of the statistics of forming the average stress over a filter-volume of 
scale I, from eddies of scale 1,. thc variance of the filtered stress (for a fixed resolved 
velocity field) will, for 1, < l,, be proportional to (le/lf)3u:1, where u*] is a local subgrid 
turbulent velocity scale. Differentiating on a scale I ,  leads to  fluctuations in the 
gradients of the filtered stresses of size 

Also, if 1, is of order 1, we expect the variance of the filtered stress to  be of order u : ~  
and the gradients in the filtered stresses to be of order uil/l,. In both cases the stress 
will vary on a timescale T .  (Note that if we consider a sharp 'top-hat' spatial filter, 
then the appropriate average stress is an area average, because the rate of change of 
filtered velocity a t  a point is related to the stresses on the surface of the top-hat 
region surrounding the point. This leads to a stress variance of order ( l e / l f ) 2 u ~ l  for 
1, < b, and stress gradients of order ( l e / l f ) u ~ l / l f .  In this case the size of the stress 
gradients cannot be so easily estimated from the variance of the top-hat filtered 
stresses (namely (le/lf)3u:1) because the top-hat filter is a somewhat singular case, 
having a long tail in spectral space which results in the contributions to the gradients 
of the top-hat filtered stress being dominated by scales which are much smaller than 
the filter scale.) 

It is now possible to estimate the rate of energy backscatter resulting from the 
fluctuations in stress. We assume the fluctuating stress gradients, and hence the 
resultant accelerations, have magnitude 

This is consistent with the above analysis for I ,  4 1, and for 1, of order I,. These 
accelerations are expected to vary on a timescale T, giving an input to the resolved 
encrgy K given by 

aK 13 

at 1; *I 
- a a 2 T c c ' u 4  T .  

We note t.hat T a le/u*l and the dissipation e a u$/l,. Thus (18) yields 

Note that T is of the order of the local viscous stability limit on the timestep. 
We assume the filter scale 1, is constant throughout the flow. In  particular we will 

assume that 1, does not alter as the wall is approached. The value of I ,  is not formally 
known but is assumed proportional to I , ,  the value in the flow interior of the mixing 
length in the Smagorinsky model. We also assume the size 1, of the subgrid eddies is 
proportional to the subgrid-scale mixing length 1 by a similar constant of 
proportionality. The backscatter model will be required to give an energy backscatter 
rate with a pointwise mean value of 

5 i3K 
- at = C B ( 3  e. 
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Here C, is a constant which, as we note below, theory suggests should be about unity 
in value. 

For a scalar variable we assume a flux variance 

13 

where O,, is a local scale for the magnitude of the subgrid scalar fluctuations. An 
analogous argument then leads to an input to the resolved scalar variance K ,  given 
by 

where 
T .  Finally we obtain 

is the timescale for variations in the scalar fluxes and may be different from 

where for consistency CB, is defined relative to half the scalar variance. The factors 
of (Z /Z0 )5  obtained in (20) and (23) are only based on simple arguments, valid in a limit 
which does not really apply, and must be treated with caution. Comments on the 
relative size of C ,  and C,, are made below. 

Considering the application of the filter operation to a turbulent flow, i t  is 
physically clear that if the filter is applied to widely separated flow volumes then the 
values of the fluctuations in the (filtered) subgrid stress will be uncorrelated. If 
however we consider points closer in space than the filter scale, the subgrid stress 
fluctuations will be correlated. We therefore expect thc fluctuating stresses to vary 
on the filter scale. On scales greater than the filter scale the random stress values 
imply an energy backscatter with a k4 spectrum in accord with theoretical 
expectations (Kraichnan 1976). 

Guided by the above we will introduce random stresses and scalar fluxes into our 
simulations to provide backscatter of energy and scalar variance. The stress 
fluctuations give rise to a force but only the divergence-free part of this force need 
be considered - unless we are concerned over the exact value of model pressure we do 
not have to consider the irrotational part of the force which can be absorbed in the 
pressure gradient by a redefinition of pressure. In the model we will therefore 
introduce a random vector potential (q5z, q5v, q ! ~ ~ )  and the random accelerations will be 
given by the curl of this vector potential. In  the scalar equations we will introduce 
a random flux vector (+G.,, +clzl, with the random source of the scalar field being 
given by its divergence. In  the implementation we take six three-dimensional fields 
of independent random numbers defined on the numerical grid. These fields should 
then be scaled appropriately and filtered on the filter scale to obtain the components 
of the vector potential and flux vector. However, as we have noted, the filter is not 
known. Here we filter by applying a 1 : 2 : 1 smoothing operator in all three directions. 
This generates an acceleration spectrum which falls off in a reasonable way at high 
wavenumbers. There is a further complication where the mesh is non-uniform. For 
example close to the wall the mesh is refined and this filter operation will not 
correspond to the required fixed scale. To compensate for this we adjust the scaling 
of the random numbers so that the energy input will not depend on the local mesh 
spacing. In a similar way we hope that the exact frequency of the energy input is not 
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critical and impose the random accelerations not on a timescale T,  but on a timescale 
equal to the timestep At. To maintain the same energy input and ensure consistent 
behaviour as At + 0 we must again adjust the scaling appropriately. Although we will 
aim to enforce the desired rate of energy backscatter we are failing to ensure that the 
accelerations which give this backscatter are always on the correct space and time 
scales. 

We can now describe the whole procedure in the numerical model. First, fields of 
uniformly distributed random numbers with mean zero are generated. Because a 
leapfrog numerical time-marching scheme is used, these random numbers are 
changed only every other timestep to avoid excessive time-splitting. These fields are 
scaled appropriately (as indicated below), filtered with the three-dimensional 1 : 2 : 1 
operator, and then the curl (divergence in the scalar case) of the resulting field is 
taken to give the required acceleration field a, (or scalar source 4). As noted above, 
the scalings of the filtered random numbers should be chosen to ensure the desired 
backscatter rates. The accelerations give rise to a local rate of change of resolved 
energy K whose ensemble average (conditional on the values of the resolved fields) 
is given by 

where uit is the variance of a,. Similarly the ensemble average rate of change of scalar 
variance is given by 

?!% = 2uiAt ,  
at 

where ui is the variance of q. To ensure the desired energy input a t  each point, the 
random-number scaling factor is chosen to be position dependent. This factor does 
not vary between components but is of course different for the vector potential and 
the flux vector. The factor is chosen to ensure that the right-hand sides of (24) and 
(25)  equal the desired backscatter rates of energy and scalar variance, i.e. C B ( l / 1 0 ) 5 ~  
and 2CB,(l/10)5~,.  In  implementing this, E is calculated using (29)  below. 

In the results presented below, the filtering was (incorrectly) carried out before the 
scaling. This has the effect of altering the backscatter rates slightly because the 
values of gat and uq then depend on the gradients in the scaling factors as well as on 
the local pointwise values. However, subsequent tests have shown that the 
backscatter rate was only altered by a few percent and that the flow statistics were 
not significantly affected. 

The preceding conceptual discussion of the backscatter can provide some comment 
on the ratio qB/CB,. In the interior of the flow, we have usstress = a,($E) and 
uflux = a,(iE)iE5, where a, and af are order unity (they are exactly unity for statistics 
of pointwise stresses and fluxes in isotropic quasi-Gaussian flows). Following the 
above analysis and differentiating the stress and flux fields on a scale I , ,  we obtain 

and 

The following argument suggests that the constants of proportionality in (26)  and 
(27)  are likely to be similar. There are three components of the random flux while 
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there are nine components of the random stress. However one third of the velocity 
modes excited by the random stresses are compressible modes which are suppressed 
by the pressure, and an additional factor of a half is expected in (26) because K is i2, 
not 2. Equations (26) and (27) can be combined with (14), (20), (23) and the 
assumption of equal constants in (26) and (27) to obtain 

3C', 5$ a: c,, = c, 
40, Ta,2 ' 

If we take a, = a,, T = q, and note the proposed numerical values of C,  and D,,  then 
C,, = 0.4OCB. Although there are many assumptions in this argument we are left 
with the view that C,, is most probably less than C,. If we could estimate a,, af, T ,  

and the effect of differentiation more accurately we could estimate C, and C,, as 
well as their ratio. The above analysis does confirm however that they are formally 
of order unity. 

A more convincing but still approximate estimate can be obtained from EDQNM 
theory (Chasnov 1991). Using the backscatter expressions in Chasnov (1991) a value 
of C, = 1.4 is obtained for an infinite inertial subrange (J. R.  Chasnov, private 
communication). Noting the differences between momentum and scalar transfer in 
EDQNM theory (Lesieur 1987) the value for C,, would be expected to be reduced in 
consequence of the smaller scalar timescale. Specifically C,,/C, = ?(/3/a) ( l g r ) ,  
where a and /3 are the inertial-subrange constants for velocity and temperature (see 
Appendix A). Taking a = 1.5, /3 = 0.7 and P r  = 0.7 gives C,, = O.32CB. This agrees 
qualitatively with the preceding assertions for C,,/C,. 

In this study C,  is found t o  have profound effects and we are able to see what value 
of C,  gives the best results. As we shall see below, the value C, = 1.4, when used with 
n = 2 in (9), has been found to give optimal results. Owing to the various assumptions 
in the implementation this empirically determined value should not be considered 
precise. We are however encouraged by the evidence that C, is about unity and in 
agreement with Chasnov's value. Owing to the passivity and linearity of the scalar 
variable the value of C,, does not affect the mean velocity or scalar profiles and the 
only basis for empirical adjustment would be statistics involving the scalar variance. 
Noting the uncertainty in C,, we consider various values including C,, = 0, the 
latter case simply allowing a judgement of the separate effects of scalar backscatter 
and momentum backscatter. 

The introduction of backscatter has some penalty in increasing the computational 
cost of the simulation. In  an initial implementation the CPU time per timestep was 
nearly doubled. Most of this increase arose from the calculation of random numbers 
and the CPU penalty was reduced to an increase of only 15Y0 in the CPU time by 
re-using the same two-dimensional field of random numbers. Each required two- 
dimensional field of random numbers was then obtained by considering a random 
origin within this periodic two-dimensional field. On every alternate timestep 
however, completely new random numbers were generated. Tests were carried out in 
which energy was introduced into an initial state with u = 0 by applying random 
forcing as indicated above (but with the right-hand side of (20) replaced by a 
constant). These tests showed the ensemble-average energy backscatter rate to be 
unchanged by this computational short cut. There is a further possible penalty if the 
timestep is liable to be limited by viscous numerical instabilities. Although the mean 
values of viscosity are not much altered, the peak values within the fields were 
increased by a factor of about two. This leads to some reduction in timestep in the 
case considered below. 
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Before proceeding with the model wc need to  consider whether the inclusion of 
backscatter implies that the subgrid Yrandtl number should be altered and also how 
the subgrid-scale energy and scalar variance should be estimated. The local 
equilibrium subgrid energy equation with backscatter is 

5 

VS2 = €+C.(t) E ,  

the drain vS2 being partitioned between the dissipation E and the backscatter. The 
resolved-scale energy equation contains a term due to the random accelerations 
which will have a mean value equal to  this backscatter. For algebraic simplicity we 
will rewrite the subgrid energy equation as 

where C, is a constant simply related to  CB(l/Z,J5 and we also note the fact that the 
subgrid-scale energy E is related to E and 1. In the absence of backscatter the value 
of C ,  is determined by the stress-energy ratio. For completeness we also note the 
local equilibrium equation for subgrid scalar variance E,, i.e. 

0 2  E ~ E ~  
v - ( i - D 2 )  = E~ = Ill- 

Pr 1 '  

where D,  is the constant analogous to C,, and D ,  is a constant which is determined, 
in the absence of backscatter, by the stress-energy ratio, the scalar-flux correlation 
coefficient and the Prandtl number. 

We now follow the analysis of Lilly (1967). In the interior of the flow we assume 
the filter scale falls within a long inertial subrange with spectra E(U)(k) = a c k g  and 
E@)(k) = /h-f& for the energy and passive scalar variance. Observations give 
values of a and f i  of about 1.5 and 0.7 (Lesieur 1987). We then consider integrals over 
a spherical filter volume, i.e. 

and (34) 

Note that E(U) integrates to the total energy whilst E(@ integrates to half the scalar 
variance. These results only apply in an ensemble mean and, in detail, for a spherical 
filter. The conventional Lilly analysis notes that 

= 12x3, 

ee = 12SD2/Pr. 
(36) 

(37) 
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With backscatter we now have 
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= 1 2 s 3 ( 1 -  CJ, 

E ,  = 12SD2( 1 -D,)/Pr 

and, if in the flow interior we take 1 = I, and I, = l,/C,, we obtain 

and 

(38) 

(39) 

This gives C, C,,(l -C,)-:, C, = C,&l -C,)-;, Pr = Pro(l-D2)/(l  -C,) and 
D, = Dlo( 1 - C,)-n, where C,,, C,,, Pro, and D,, are the values with C, = D, = 0. With 
backscatter C,, C ,  and D, are thus increased. These results enable us to estimate E 
and E,  from 

and 
EiE, D,, EiEo 

€0 = D l - -  - 
I (l-C,$ I . (44) 

The Prandtl number is seen to depend on the value of C, and D,  and we note that, 
in contrast to the value of Pro = 0.47 which follows from values of a = 1.5 and p =  0.7 
in the absence of backscatter, the value obtained with backscatter (C, = 1.4, 
C,, = 0.45) is 0.77. We have taken Pr to be a constant (0.7) rather than the value 
given by (42). The constant value taken for Pr happens to nearly match (42) in the 
flow interior (for C, = 1.4, C,, = 0.45) and surface-layer observations close to the 
ground. If (42) were strictly enforced then Pr would be unrealistic close to the 
surface. The increase in C, from C,, to  C,,,/( 1 - C,); suggests that with backscatter we 
are reducing the filter scale if we keep I, a constant. It suggests that we should, for 
equal ratio of filter to mesh, change I, to l o / (  1 - C,); as we alter C,. Taking our view 
of filters and meshes, this has implications for numerical accuracy and the scale on 
which the backscatter random stresses should be filtered. In  the near-surface region, 
where 1 changes from I, to K Z ,  we use (20) to estimate how the backscatter should vary 
with height. The arguments leading to (20) assumed a fixed filter scale I ,  which is 
proportional to I,. Here there is a suggestion that, since C, varies in the matching 
region, perhaps the ratio l o / &  should also be varied and lead to a modification of (20). 
However, the Lilly analysis is wholly inappropriate to the near-surface region and we 
have not sought to modify (20) in consequence of it. Even in the flow interior the 
analysis has many assumptions and should not be relied on quantitatively. We have 
however used (43) and (44) to estimate the subgrid-scale energy and scalar variance 
in our simulations, with E and E ,  given by (38) and (39) and with C,, and D,, taken 
to be the values of C, and D, used in the simulations without backscatter. The values 
of E and E,  thus obtained are, for fixed E and etlr a factor of (1  - C,)i smaller than those 
obtained in the absence of backscatter. Given the uncertainty in the correct values 
for C, and D, this is a secondary issue. We note the need for a better theoretical basis 
for these changes. 
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5. Backscatter results 
The backscatter model has been applied in simulations of the neutral static 

stability planetary boundary layer. Figure 5 shows the resulting vertical profiles of 
non-dimensional velocity shear and passive scalar gradient. These were obtained 
with n = 2 in the wall-match equation and a value of C, = 1.4. They can be 
compared with the profiles in figure 3 obtained without backscatter. The simulation 
with backscatter has a realistic velocity profile. The scalar profile is also very much 
improved and we note the possibility that  an accurate profile might require the 
Prandtl number in the subgrid model to  vary in the matching region. In  the flow 
interior a value based on inertial subrange data would seem appropriate whilst close 
to the wall a value based on boundary-layer behaviour might be correct. We have 
maintained a constant value of 0.7 which is typical of a boundary layer and perhaps 
consistent with the above analysis of how backscatter alters Pr in the inertial 
subrange. As noted above the improved scalar profile does not imply that we have 
used the correct value of CBo. Owing to the linearity of the scalar variable the scalar 
backscatter has no influence on the mean scalar profile and the profile behaviour only 
allows a judgement of the value of C,. 

The inclusion of backscatter seems remarkably successful in eliminating the 
obvious errors in the matching region. The precise agreement obtained depends on 
the choice of C, = 1.4 and on the choice of n = 2. With other parameters fixed the 
value of the velocity gradient in the matching region varies steadily with C,. Thus 
a value of C, = 0.5 was found to only half-eliminate the errors whilst a value of 
C, = 2.0 leads to non-dimensional gradients as small as 0.5. The power n has its main 
influence on the shape of the profile in the matching region so that  with n = 1 the 
non-dimensional gradients remain slightly too big very close to the surface. A test of 
altering the factor (Z/Z0)5 (equation (20)) to a factor (l/Zo)z showed that this factor, like 
the power n, affected the profile shape. With a factor of (l/Zo)z the non-dimensional 
shear reduced below unity in a small region close to  the surface. The profiles in figure 
5 show a tendency for the non-dimensional gradients to take a value slightly less than 
unity close to the surface. This may be a consequence of seeking to  impose the von 
KBrmBn constant a t  a value of 0.4 on a pointwise basis. At the height of the lowest 
grid point this will lead to an area-average value of K approximately equal to 
0.4( 1 + q L / 2 v A  + aE/4UA), where U, is the mean horizontal velocity a t  the lowest 
height and nu and C T ~  are the standard deviations of the x- and y-components of the 
velocity a t  the same height. The correction is about 2% and accounts for the non- 
dimensional gradients being slightly less than unity. Indeed it is clear that  a refined 
attempt to determine G,  and n (in (9)) would need to  address this issue of local values 
of the von Kirman constant. We may have already made some implicit allowance in 
our choice of n and C,. 

This correction of the velocity profile would, in itself, be expected to have a large 
influence on the flow. In  the simulation without backscatter the surface stress u$ has 
a value of 0.141 (geostrophic drag coefficient C, = 1.41 x while with backscatter 
the surface stress increases to 0.189 (C, = 1.89 x This latter value is in better 
agreement with observations, with the Rossby number similarity coefficients 
estimated by Grant (1986) suggesting a value of C, = 2.0 x for these conditions. 
We note the restrictive resolution and upper boundary conditions used in the present 
study and do not seek detailed comparison with planetary-boundary-layer data. 

Figure 6 shows the variances of the velocity components from the simulation with 
backscatter. The profile of u; has been dramatically changed and no longer has an 
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FIGLIRE 5 .  Profiles of the non-dimensional shear and passive scalar gradient from the planetary- 
boundary-layer simulation with backscatter. Also shown is the non-dimensional shear obtained 
from a mixing-length solution with the mixing-length given by (15). 
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FIGURE 6. Profiles of the velocit,y variances C T ~ ,  a: and CT:, from the planetary-boundary-layer 
simulation with backscatter. Solid lines : total variance ; dashed line : subgrid part. (a)  Results with 
an isotropic estimate of the subgrid contributions based on (43); ( b )  results using subgrid estimates 
of C T ~ ,  based on the Kansas data  as described in the text. 

unrealistic near-surface peak. The value close to  the surface is however unrealistic 
due to the isotropic estimate of subgrid variance. In contrast to the case without 
backscatter the resolved-scale contribution is not so large as to prevent a match with 
the expected value of 5 to 6 times u i .  The changes to the CT; profile are less marked 
and the profile remains consistent with a surface value of about 2.5~2, .  The profile of 
c: shows values in the flow interior which are generally larger than in the simulation 
without backscatter and are consistcnt with observed profiles (Grant 1986) and an 
expected near-surface value of 1.4 to 1.8 times u i .  Thc slight local minimum of gi in 
the matching region remains. We attribute this to the inadequate subgrid-scale 
energy estimates. which as well as assuming an isotropic energy distribution, make 
no allowance (other than that caused by the variation of C, in (43)) for the variation 
in the subgrid stress-nergy ratio as the surface is approached. 
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FIGURE 7 .  Profiles of the scalar variance I$ from the planetary-boundary-layer simulations. Solid 
lines : total variance, dashed lines: subgrid part. (a) Results obtained without backscatter: ( 6 )  
results obtained using backscatter. In ( b )  the subgrid component is only shown for C,, = 0.45. The 
other three curves show uo increasing with C,, for C,, = 0, 0.45 and 1.4. 
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FIGURE 8. Profiles of the turbulent Prandtl number, the correlation coefficient of u and w. and the 
correlation coefficient of w and 0 from the planetary-boundary-layer simulations. ( a )  Results 
obtained without backscatter; ( b )  results obtained using backscatter with CB0 = 0.45. 

From the observed (Kaimal et al. 1972) spectra of a: and uw in the atmospheric 
surface layer we see that filtering a t  a scale comparable with the peak of the U P  

spectrum gives a large fraction of total energy as subgrid scale but only a small 
fraction of the stress as subgrid scale. I n  the matching region we are thus 
underestimating the subgrid values of vk by assuming the value typical of the whole 
spectrum. It is possible to  use the observed spectra to provide an improved estimate 
of v;. By comparing the fraction of the shear stress which is subgrid with integrals 
of the observed w spectrum a filter scale can be deduced. This value of filter scale 
can then be applied to the u; spectrum to deduce an appropriate estimate of subgrid- 
scale v;. Details of this procedure are given in Appendix B. These estimates should 
be an improvement upon those based on (14) or (43) but are, as noted in the 
Appendix, still subject to various assumptions. The low-frequency parts of 
atmospheric gi and vt spectra are not as well defined as those of vi and we have not 
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FIGVRE 9(u-c).  For caption see facing page 
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FIGURE 9. Contour plots of horizontal sections of the w and O-(O) fields obtained a t  z = 86 m. 
(u, b )  Show the w and O-(O) fields respectively without backscatter; ( c ,  d )  again show the w and 
S - ( O )  fields respectively using backscatter with C,, = 0.45 . In each plot the contour interval is 
a tenth of the maximum absolute value of the field and the dashed lines show negative values. 

attempted to use similar procedures to obtain estimates of the subgrid parts of c r i  
and g:. Figure 6 ( b )  shows the variances of all three velocity components with this 
subgrid estimate of crk used with each. The high-frequency parts of the ui and gz 

spectra match the gk spectrum and, away from the surface, the gb estimate should 
apply to all these spectra. Close to the surface the total variance in ci and gt will be 
in error. The improvement seen in figure 6 ( b )  suggests that our diagnosis of the gb 
minimum was correct. A modest maximum now appears. We believe that the correct 
behaviour may be a simple increase towards the surface but observations (Hogstrom 
1990) do invariably seem to show some increase in uk with height in the near-surface 
region. To do justice to the details of these profiles, a simulation with greater 
resolution is needed. 

We have noted that the scalar backscatter does not influence the mean scalar 
profile. The direct effect of the scalar backscatter is to increase the scalar variance 
and any judgement of the value of C,, for a passive scalar has to be based on the 
behaviour of statistics involving the scalar variance. We present results obtained 
with three values of C,,, namely 1.4, 0.45 and 0.0 (C, = 1.4 in all cases). Figure 7 (a) 
shows profiles of the scalar variance obtained in the original simulation without 
backscatter and figure 7 ( b )  shows the various cases with backscatter. For clarity the 
subgrid-scale contribution in figure 7 (b)  is only shown with G,, = 0.45. The subgrid- 
scale contribution is based on (14) in the case without backscatter and on (44) in the 
cases with backscatter. These estimates are based on inertial-subrange assumptions 
and, although they may be realistic in the flow interior, are not appropriate near the 
surface. The shape of the scalar variance profile is not expected to exactly match the 
gi profile. Apart from dynamical differences, the different shapes of the shear stress 
and scalar flux profiles imposed here are a large influence. I n  contrast to the near- 
linear decrease of stress with height, in consequence of the constant-temperature 
upper boundary condition the scalar flux is constant with height in these simulations. 
A further difference arises at the surface, where in consequence of the constant-heat- 
flux boundary condition the resolved scalar fluctuations are a maximum a t  z = 0. 
Without backscatter there is an unrealistic maximum which occurs a t  the matching 
height and which we believe to  be associated with mean scalar gradient errors a t  that 
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height. In  the cases with backscatter and C,, = 0 or 0.45, the unrealistic maximum 
has been removed and we see a more smoothly varying profile with a surface 
maximum. Increasing C,, leads to an increase in the values of C T ~ .  A typical value of 
uil6: in a neutral surface layer is about 5 (Smith & Anderson 1984) but the profile 
and exact value is not so well known as to allow a judgement of the optimum value 
of CB,. With C,, = 1.4 the increase in u; does not seem particularly excessive but in 
the matching region a maximum of uo is caused by the temperature backscatter. This 
seems unrealistic and is consistent with the view that C,, should be less than C,. 

The conclusion here is that the backscatter has had entirely bcneficial effects. The 
greatest effects of the backscatter in the simulation are confined to the features 
shown. Other statistics show little modification and in view of the previous general 
success of large-eddy simulations this is reassuring. 

As a further illustration of the changcs produced, figure 8 shows profiles of the 
turbulent Prandtl number, the correlation coefficicnt of u and w (Cum),  and the 
correlation coefficient of w and 6 (Cw,,). Figure 8 ( a )  shows the case without backscatter 
and figure 8 ( b )  the case with backscatter, with C, = 1.4 and C,, = 0.45. These 
quantities have been derived with the inclusion of' the subgrid-scale statistics. This 
is straightforward in the case of the Prandtl number, where only fluxes are involved, 
but  for the correlation coefficients we have used the isotropic subgrid energy estimate 
based on (14), (43) and (44) as appropriate and some near-surface errors must be 
expected. The Prandtl number does not seem to be significantly influenced by 
backscattcr. Noting that the subgrid-scale value of 0.7 is forced at the surface, the 
simulations suggest that the Prandtl number should have a surface value of about 
0.8 decreasing to 0.6 in the middle of the boundary layer. The correlation coefficient of 
u and w has a near-constant interior value of about -0.3 both with and without 
backscatter. Without backscatter the values show a weak near-surface minimum 
which is probably due to the excessive values of at which occur near the surface in 
that simulation. With backscatter there is a weak near-surface maximum which is 
associated with errors in subgrid-scale estimates and the minimum of uk at that 
height. The correlation coefficient for w and 6 has a near-constant interior value of 
about 0.4 in the simulation with backscatter. This decreases close to the surface due 
to the increase in C T ~  and the erroneously large subgrid estimate for a; a t  the surface 
caused by using (43). Without backscatter this correlation coefficient is reduced by 
the larger values of ui. The differences seen between the profiles in figures 8 ( a )  and 
8 ( b )  are small and both results show fair agreement with observations. 

We conclude the presentation of results with an examination of the velocity and 
scalar fields. Figure 9 shows horizontal sections of the vertical velocity and scalar 
fields a t  a level within the matching region where backscatter is significant. Figures 
9(a) and 9(b) show these fields for the case without backscatter and figures 9(c) and 
9(d) show the fields with backscatter (C, = 1.4. C,, = 0.45). Without backscatter 
the fields are fairly smooth and evidence of a distinct elongated structure which 
spans the domain is seen in the scalar field. With backscatter the fields have much 
finer scales present and we would judge them to be a little rough for good finite- 
difference approximation. The plotting routine uses only linear interpolation and 
does not mask rough features. The tendency to generate elongated structures is seen 
to be diminished and two-point correlations (not shown) are more circular. 

Figure 10 shows vertical sections of the vertical velocity field, without (figure 10a) 
and with backscatter (figure lob). There is a general tendency towards smaller scales 
throughout the flow but large differences are confined to the near-surface region 
where eddies now penetrate much closer to the wall. 
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FIGURE 10. Contour plots of (y, z )  sections of the w-field. (a) Results obtained without backscatter; 
( b )  results obtained using backscatter. The contour interval is a tenth of the maximum absolute 
value of the field and the dashed lines show negative values. 

From this examination of the velocity fields we must express some concern that 
the backscattered energy has lead to slightly rough fields which may give some finite- 
difference errors. The fields obtained with the Smagorinsky model were fairly 
smooth ; however, the analysis suggests that  with I ,  fixed we have reduced the filter 
scale. There may therefore be a requirement to increase the ratio of 1, to the mesh 
spacing (i.e. C,) with backscatter. It is also possible that we have not adequately 
filtered the random stress field and have consequently input too much energy on the 
shortest scales. We note that, from the tests shown in 93, reducing 1, did not have 
beneficial effects, and so we are confident that the improvements found with 
backscatter are not just a consequence of effectively altering I ,  or C,. 

6. Conclusions 
Previous large-eddy simulations of high-Reynolds-number boundary layers suffer 

from a common problem of excessive mean velocity gradients close to the surface. A 
series of test simulations suggest that whatever near-surface mixing-length variation 
is adopted this error is inherent in the Smagorinsky subgrid model. Noting that 
stochastic backscatter is a physical process which is missing from the Smagorinsky 
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model and which should be important in this region, a Smagorinsky-backscatter 
model is proposed and tested. The backscatter appears to remedy the problem and 
leads to an improved large-eddy simulation. Support that  backscatter is the correct 
cure of the problem is provided by the theoretical support for the magnitude of the 
effect. The magnitude found to give optimum results is an energy backscatter which, 
where lengthscales are not influenced by walls, has a value of 1.4 times the 
dissipation. This value is equal to that obtained from EDQNM theory for an infinite 
inertial subrange (J. R. Chasnov, private communication giving the evaluation of 
the integrals in Chasnov 1991). In the case of a passive scalar the backscatter in the 
scalar equation does not influence the mean scalar profile but, rather, the scalar 
variance and related statistics. The results obtained support the theoretical 
suggestion that the backscatter of half the scalar variance is a relatively smaller 
fraction of the scalar dissipation. The precise value of scalar coefficient could not be 
determined and we note that future applications with buoyant scalars may provide 
a more sensitive test. 

This paper has demonstrated a credible cure to a long-standing problem with an 
improvement to the Smagorinsky subgrid model so as to include stochastic 
backscatter. It is perhaps especially significant that  the velocity gradient problem 
did not improve with increased resolution. Without remedy, this problem would 
seriously impair the value of high-Reynolds-number simulations. The success of the 
backscatter model gives hope that the optimism concerning the many future 
applications of large-eddy simulation is well founded. 

Future high-resolution studies should allow more careful refinement of the 
stochastic model. In particular it would seem desirable to quantify the backscatter 
process by analysis of high-resolution velocity fields in either direct or large-eddy 
simulations. 

Appendix A. The EDQNM prediction for C,,/C, 
Following Chasnov's (1991) work with the velocity field we can estimate the 

backscatter rate of (half) scalar variance from the EDQNM approximation. We 
restrict attention to the flow interior where the filter scale lies in the inertial 
subrange. The EDQNM approximation then gives a rate of change of E("(k) resulting 
from the backscatter which equals 

(Lesieur 1987, p. 147), the integration being over the part of the region Ip-ql < k 
where either p or q exceeds the spectral cut. The notation here is as in Chasnov's 
paper, but with superscripts (U) and (,) being used to distinguish quantities 
corresponding to the velocity and scalar fields. Equation (A 1 )  is the analogue of 
Chasnov's equation ( 1  1 ) .  This could be evaluated numerically, but we content 
ourselves with evaluating the asymptotic form which occurs when k is much less than 
the spectral cut. This leads to a spectral backscatter rate given by 

(see Lesieur, 1987, p. 153), where we have assumed a sharp spectral cut a t  
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wavenumber n/1, as in the Lilly analysis presented in $ 4 .  Comparing this with 
Chasnov’s equation (18) yields 

where we have taken the timescale ratio 0 ~ ~ p / 6 & ’ p  to the 1/(3Pr) as is usual (Lesicur 
1987, p. 146). With 01 = 1.5, p = 0.7 and Pr = 0.7, equation (A 3) gives CB, = O.32CB. 

Appendix B. Calculation of subgrid rb using the Kansas data 

surface-layer w-spectra and uw-cospectra are well described by 
Data collected by Kaimal et al. (1972) during the Kansas experiment show that the 

1 4 4  f 
(1  + 9.6f )2.4 ’ nC,,(n) = 

nX,(n) = 2u2, f 
1+5.3fi’ 

where n denotes frequency and f = nz/a. If the filter scale corresponds to a frequency 
nf then we would expect the fractions of uk and w which are subgrid to be 

and 

Using the known fraction of subgrid stress we can therefore estimate np, and hence 
the fraction of c r i  which is subgrid. 
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